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Application to conformational optimization of a tetrapeptide
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A Monte Carlo simulated annealing algorithm based on the generalized entropy of Tsallis is presented. The
algorithm obeys detailed balance and reduces to a steepest descent algorithm at low temperatures. Application
to the conformational optimization of a tetrapeptide demonstrates that the algorithm is more effective in
locating low energy minima than standard simulated annealing based on molecular dynamics or Monte Carlo

methods.
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Finding the ground state conformation of biologically im-
portant molecules has an obvious importance, both from the
academic and pragmatic points of view [1]. The problem is
hard for biomolecules, such as proteins, because of the rug-
gedness of the energy landscape which is characterized by an
immense number of local minima separated by a broad dis-
tribution of barrier heights [2,3]. Algorithms to find the glo-
bal minimum of an empirical potential energy function for
molecules have been devised, among which a central role is
played by the simulated annealing methods [4]. Once a cool-
ing schedule is chosen, representative configurations of the
allowed microstates are generated by methods either of the
molecular dynamics (MD) or Monte Carlo (MC) types. For
biomolecular simulations, simulated annealing is tradition-
ally built on an MD approach [5] where the dynamics of the
system is simulated by integrating the Newtonian equations
of motion and the temperature is controlled through coupling
to a heat bath. If the MC approach is used, after having
drawn a new configuration, it is accepted or rejected accord-
ing to a probability of, for example, the Metropolis type [6]

p=min[ lL,exp(— BAE)], (1)

where B=1/kT and AE is the change in potential energy.
This acceptance probability has the desirable features that (i)
it obeys detailed balance and (ii) it reduces to a steepest
descent minimizer at low temperature (where only moves
which decrease the potential energy are accepted). In addi-
tion to the standard Metropolis Monte Carlo protocol, several
other smarter MC algorithms have been designed using
atomic moves biased by the forces acting upon the atoms in
the molecule [7,8] or by relaxing the restriction to Markov
processes [9].

Recently, a new type of updating criterion has been pro-
posed based upon the generalized statistical mechanics of
Tsallis [10]. In the Tsallis formalism, a generalized statistics
is built from the generalized entropy
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where ¢ is a real number and S, tends to the information
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when g—1. Maximizing the Tsallis entropy with the con-
straints
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where €; is the energy spectrum, the generalized probability
distribution is found to be

pi:[l_(l_Q)Bei]l/(liq)/zqs (5)

where Z, is the generalized partition function. This distribu-
tion goes to the Gibbs-Boltzmann distribution when g tends
to 1. It has been demonstrated that this generalized statistics
preserves the Legendre transformations between thermody-
namic state functions [11], leaves form-invariant, for any ¢,
the von Neumann equation [12] and the Ehrenfest theorem
[13], can be used to write, among others, a generalized
Boltzmann H-theorem [14], Langevin and Fokker-Planck
equations [15], and the fluctuation-dissipation theorem [16].

Inspired by this generalized statistics, a new generalized
simulated annealing algorithm has been suggested based on
the acceptance probability

p=min[1,[1—(1—q)ﬁAE]l/(lfq)] (6)

where AFE is the change in the potential energy. This prob-
ability has the desirable property that it reduces to a steepest
descent in energy for T—0. This method was shown [10] to
be faster than both the classical simulated annealing and the
fast simulated annealing methods [17] and was employed to
find close to optimal solutions to the traveling salesman
problem [18].

However, it is easy to demonstrate that the acceptance
criterion (6) does not obey detailed balance. It is true that
detailed balance is a sufficient but not necessary condition
for the convergence to the equilibrium distribution. Even so,
the acceptance in (6) does not, in general, converge towards
the generalized distribution of (5).

We propose a generalized acceptance probability,
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that obeys detailed balance. Moreover, this acceptance prob-
ability does tend towards the generalized equilibrium distri-
bution in (5). The parameter g is varied as a monotonically
decreasing function of temperature. Starting with a conve-
nient value of g at the initial temperature, ¢ tends towards 1
as the temperature decreases during annealing. Since g—1 as
T—0, the desirable reduction to a steepest descent at low
temperature is preserved.

Note that the probability is raised to the power of g as
required by the generalized statistical mechanics (5). In this
generalization, the average of an observable O is defined as
O=2p?0; and thus the detailed balance must be written as
Wiip{=W;p?, where W;; are the elements of the transition
matrix. The fact that the probability distribution is raised to
the power of g allows one to use simulation binning to com-
pute average properties of the system according to the stan-
dard definition of the statistical average [19].

This acceptance probability is, in the spirit of the gener-
alized statistical mechanics of Tsallis, invariant under the
transformation

E,—E,+E,, (8)
where E, is a constant shift in energy and, by definition,
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For g—1 the property that the probability distribution does
not depend on the choice of the zero of energy is thus recov-
ered. Also, using the definition (9) the acceptance probability
(7) can be written in the more familiar form

p=min[ 1,exp(— BAE)]. (10)

It was shown [20] that when the maximum entropy for-
malism is applied to the entropy postulated by Tsallis (2) one
is able to recover the general Lévy probability distribution
(corresponding to a fractal random walk the dimension of
which is determined by ¢g). A variational entropic formalism
based on the Boltzmann entropy is unable to do this. Using
the acceptance probability proposed here and ¢(T)>2, a
Markov chain generated at constant temperature will con-
verge to a Lévy distribution of the length of flights. For the
particular case of g=2, the Lévy distribution is a Cauchy-
Lorentz distribution which is the same distribution used for
the fast simulated annealing method of Szu and Hartley [17].

The Metropolis acceptance criterion in (7) is not the only
solution that guarantees convergence towards the probability
distribution in (5). It is known that a solution of the type
proposed by Barker

p.
W"f:”"'fp,T]p,-’ (11)
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where «;; is the a priori symmetric transition matrix and
p; the probability distribution function for the ith state, also
satisfies detailed balance [21]. Thus, by constructing the ac-
ceptance probability using (5) and (11) we recover the famil-
iar form of acceptance widely used in simulations of spin

systems
p=31[1—tanh(BAE/2)]. (12)

A simulation using this acceptance probability will tend to-
wards the generalized probability distribution of Tsallis, as
does (7). It will obey detailed balance and, by making g—1
as the temperature decreases, it will behave like a steepest
descent at low temperatures.

In this work we have applied simulated annealing proto-
cols to the conformational optimization of the 48 atom
tetraalanine peptide [isobutyl-(ala);-methlyamide]. We have
generated 50 random (uncorrelated) initial configurations of
the tetraalanine by ‘““amnesiating” the system using constant
temperature MD runs at 3000 K. The annealing was per-
formed using both molecular dynamics simulations and sto-
chastic simulations of the Monte Carlo type.

A Monte Carlo simulation using individual atomic moves
drawn from a certain distribution function has been shown to
be inefficient for polymeric systems [5]. Most of the substan-
tial moves are rejected since they stretch the molecule to
positions with high potential energies. We have utilized a
method that uses the features of both stochastic methods,
such as MC, and deterministic methods, such as MD. This
hybrid MD-MC method was first devised in quantum chro-
modynamics for simulations of lattice field theory. It com-
bines the convenience of integrating Newton’s equations of
motion with the absence of discretization errors usually in-
volved in such calculations to give a Monte Carlo-like pro-
gram [22]. We perform the simulation in three steps. (i) We
select velocities from a Maxwell distribution compatible
with the system being in contact with a heat bath at a well
defined temperature. (ii) We evolve the positions and the
velocities by integrating the Newtonian equations of motion
over a small time interval (50 fs) to generate a new point in
the phase space. (iii) We accept or reject this new phase point
according to a Metropolis procedure to return to (i). It is well
known that, as long as the discretization of the equations of
motion is reversible and preserves the phase space volume,
an acceptance probability such as (1) will exactly satisfy de-
tailed balance and the system will tend towards the Maxwell-
Boltzmann distribution [23].

For both the MD and hybrid MD-MC methods, we use
the version 19 CHARMM (Chemistry at Harvard Molecular
Mechanics) force field [24], containing harmonic bond and
angle terms, dihedral, electrostatic and Lennard-Jones terms.
There was no nonbonded potential energy truncation and the
integration was performed using the velocity Verlet integra-
tor. For the cooling schedule, the initial temperature is set to
3000 K and decreased exponentially according to the rule
T:.1=(1—a)T;, where a=10"3. This is done until the
temperature reaches 30 K, after which a short refinement by
conjugate gradient minimization is performed. The value of
q is also decreased exponentially to 1, starting from values
higher than 1 (typically ¢ =2). The protocol of exponential
reduction of temperature and variation of g employed here
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are useful for comparing optimization methods but not opti-
mal. In practice, it may be further optimized for a given
problem. Note that since g>1, we never have to face the
awkward problem of dealing with complex probabilities. Us-
ing the acceptance probability (6) of Tsallis with g<<1, one
needs to set the acceptance probability equal to zero when-
ever the argument of the power law acceptance function (6)
is negative.

The generalized simulated annealing [10] extends classi-
cal simulated annealing and fast simulated annealing and in-
troduces the parameters (q,,q,), Where g, corresponds to
our ¢ and g, is related to the visiting distribution of the
random phase points. It was suggested that an optimal ¢,
would be negative and large in absolute value, because in
this case the acceptance would be biased towards acceptance
of lower energies. However, in our application to the particu-
lar case of biomolecules, the choice is towards positive ¢
where the objective is to explore phase space more effec-
tively. Values of g<<1 lead to a more effective local optimi-
zation and refinement, while values of g>1 are expected to
be more effective in global optimization. This is consistent
with the findings for a harmonic oscillator, where it was
shown that the equilibrium configurational distribution
broadens with increasing g [25,26].

Should we wish to relax the g>1 requirement for the
purpose of testing negative values of g, we might have a
complex probability when the new energy is higher and, re-
spectively, the old one is lower than k7/(1—gq). However,
because of the way in which the acceptance is written, we
can choose to shift the potential in such a way that all the
potential energies are higher than k7/(1—g) even at the
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FIG. 1. The potential energy of tetraalanine is plotted versus
computer time for the average of the 50 runs starting from random
initial configurations. Comparison is made between annealings us-
ing the generalized Metropolis Monte Carlo (GMMC) of (7), the
generalized Barker Monte Carlo (GBMC) of (12), molecular dy-
namics (MD), and the standard Metropolis Monte Carlo in (1)
(MMC).
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highest 7. The potential shift can also be used to tune the
acceptance ratio at high temperatures. In this work we take
the zero of energy as the natural zero of the CHARMM
potential.

We have compared annealing with (i) MD, (ii) Metropolis
MC using the Gibbs-Boltzmann statistics (1), and Tsallis sta-
tistics using the protocol defined above (positive g, starting
at 2 and converging to 1) using the (iii) generalized Metropo-
lis MC with acceptance probability (7) or (iv) the generalized
Barker MC with acceptance (12). The results are shown in
Fig. 1 where the average dependence over 50 runs is pre-
sented. For the same number of CPU time steps, MD goes to
a state that is a high local minimum (even after conjugate
gradient refinement). For the same CPU time, the standard
MC method barely has time to accept a few steps, while the
method proposed here shoots down to a position that after
refinement by a conjugate gradient minimizer is very close to
the global minimum.

Simulated annealing on the tetrapeptide with the Barker
acceptance probability (12) (see Fig. 1) requires a CPU time
a factor of about 1.5 larger than the algorithm based on (7).
This results from the fact that the off-diagonal elements of
the transition probability are larger, for the same value of
AE, in the case of the acceptance in (7) than in (12). This is
in accord with the classical Monte Carlo schemes where it
has been shown [27] that the Metropolis solution leads to a
lower statistical inefficiency than the Barker solution. Even
so, the acceptance in (12) is much faster than classical simu-
lated annealing using the acceptance in (1). Even if in the
particular case of the tetrapeptide the acceptance in (7) is
employed, there might be cases (for example in two-state
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FIG. 2. The potential energy for tetraalanine is plotted versus
the logarithm of the temperature. Note the expected smaller fluc-
tuations in the generalized Barker Monte Carlo (GBMC) when
compared to the generalized Metropolis Monte Carlo of (7)
(GMMC). Metropolis Monte Carlo (MMC) took on the order of 30
times more computer time than GMMC and the molecular dynam-
ics trajectory (MD) was trapped in high metastable states.
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systems) where (12) would perform better. The low statisti-
cal inefficiency is just one of the criteria to be met in choos-
ing between alternative transition matrices [21].

Nine of the runs done with the acceptance probability (7)
led to the global minimum. The others led to lower lying
minima, well below the minima the standard MD and MC
simulated annealing methods found in the same CPU time.
The comparison of our method with MD is shown in Fig. 2.
Neither MD nor Metropolis MC found the global minimum
in the same CPU time and both yielded final configurations
higher in energy than the method proposed here.

One component of the success of annealing with ¢g>1 is
that by using the generalized acceptance criterion the effect
is similar to using a less steep cooling schedule. Therefore, a
larger fraction of the annealing run is spent at a high effec-
tive temperature and the probability of getting trapped in
high local minima is reduced. As measured in annealing
steps, lower lying energy minima are approached faster using
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the acceptance probability (1) than when using the method
proposed here, as shown in Fig. 2. However, the amount of
CPU time spent at each temperature step is much higher in
the case of the standard Metropolis criterion than in the case
of the acceptance criterion (7). For the data in Fig. 2 it took
on the order of 30 times more computer time to anneal be-
tween the same temperatures using the same cooling sched-
ule. This demonstrates the greater computational efficiency
and improved sampling of this generalized simulated anneal-
ing algorithm.
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